Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0139423, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289076

RESUMO

Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.


Assuntos
Amicacina , Pneumonia , Humanos , Animais , Camundongos , Amicacina/farmacocinética , Antibacterianos/farmacocinética , Pulmão , Pneumonia/tratamento farmacológico , Peso Corporal
2.
Sci Transl Med ; 15(716): eadf9556, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792959

RESUMO

Traditional vaccines are difficult to deploy against the diverse antimicrobial-resistant, nosocomial pathogens that cause health care-associated infections. We developed a protein-free vaccine composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan that improved survival and reduced bacterial burden of mice with invasive blood or lung infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-expressing Escherichia coli, and carbapenem-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The vaccine also conferred protection against the fungi Rhizopus delemar and Candida albicans. Efficacy was apparent by 24 hours and lasted for up to 28 days after a single vaccine dose, with a second dose restoring efficacy. The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant health care-associated infections.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Vacinas , Animais , Camundongos , Antibacterianos/farmacologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Anti-Infecciosos/farmacologia , Imunidade Inata , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
3.
PLoS One ; 18(6): e0287102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310985

RESUMO

Recently, we reported rifabutin hyper-activity against Acinetobacter baumannii. We sought to characterize if any additional rifamycins (n = 22) would also display hyper-activity when tested in iron-limited media against A. baumannii, K. pneumoniae, and E. coli. MICs were determined against representative clinical isolates using the iron-limited media RPMI-1640. Only rifabutin was hyperactive against A. baumannii.


Assuntos
Acinetobacter baumannii , Rifamicinas , Rifamicinas/farmacologia , Escherichia coli , Klebsiella pneumoniae , Rifabutina , Ferro/farmacologia , Testes de Sensibilidade Microbiana
4.
Antimicrob Agents Chemother ; 67(5): e0019723, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022153

RESUMO

Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.


Assuntos
Antibacterianos , Polimixina B , Camundongos , Animais , Polimixina B/farmacocinética , Antibacterianos/farmacocinética , Pulmão/microbiologia , Disponibilidade Biológica , Plasma
5.
mSphere ; 7(3): e0007122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35582906

RESUMO

Novel approaches to combating antibiotic resistance are needed given the ever-continuing rise of antibiotic resistance and the scarce discovery of new antibiotics. Little is known about the colonization dynamics and the role of intrinsic plant-food characteristics in this process. We sought to determine whether plant fiber could alter colonization dynamics by antibiotic-resistant bacteria in the gut. We determined that ingestion of antibiotics in mice markedly enhanced gut colonization by a pathogenic extended-spectrum beta-lactamase-producing Escherichia coli strain of human origin, E. coli JJ1886 (ST131-H30Rx). Furthermore, ingestion of soluble acacia fiber before and after antibiotic exposure significantly reduced pathogenic E. coli colonization. 16S rRNA analysis and ex vivo cocultures demonstrated that fiber protected the microbiome by serving as a prebiotic, which induced native gut E. coli to inhibit pathogenic E. coli via colicin M. Fiber may be a useful prebiotic with which to administer antibiotics to protect human and livestock gut microbiomes against colonization from antibiotic-resistant, pathogenic bacteria. IMPORTANCE A One Health-based strategy-the concept that human health and animal health are interconnected with the environment-is necessary to determine the drivers of antibiotic resistance from food to the clinic. Moreover, humans can ingest antibiotic-resistant bacteria on food and asymptomatically, or "silently," carry such bacteria in the gut long before they develop an opportunistic extraintestinal infection. Here, we determined that fiber-rich foods, in particular acacia fiber, may be a new, promising, and inexpensive prebiotic to administer with antibiotics to protect the mammalian (i.e., human and livestock) gut against such colonization by antibiotic-resistant, pathogenic bacteria.


Assuntos
Acacia , Escherichia coli , Acacia/genética , Animais , Antibacterianos/farmacologia , Mamíferos , Camundongos , RNA Ribossômico 16S/genética , beta-Lactamases/genética
6.
mSphere ; 6(6): e0092021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817233

RESUMO

We recently reported that the antimicrobial activity of rifabutin against Acinetobacter baumannii is best modeled by the use of RPMI for in vitro susceptibility testing. Here, we define the effects of medium on the susceptibility and frequency of resistance emergence in a panel of A. baumannii, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa clinical isolates. Only A. baumannii was hypersusceptible to rifabutin in vitro and in vivo using a Galleria mellonella infection model. In vitro, the frequency of resistance emergence was greater when the bacteria were selected on RPMI versus tryptic soy agar (TSA) or Mueller-Hinton II (MHII) agar plates. However, the frequency of resistance emergence was lower in vivo than in the RPMI in vitro condition. IMPORTANCE Rifabutin has been recently described as a potential adjunctive therapy for antibiotic-resistant A. baumannii infections due to hypersensitivity in iron-depleted media, which may more closely mimic an in vivo environment. Here, we report that this hyperactivity is specific for A. baumannii, rather than being a general effect for other pathogens.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Rifabutina/farmacologia , Rifampina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/isolamento & purificação , Staphylococcus aureus/isolamento & purificação
7.
Infect Immun ; 89(10): e0016221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310884

RESUMO

Extremely drug-resistant (XDR) Acinetobacter baumannii is a notorious and frequently encountered pathogen demanding novel therapeutic interventions. An initial monoclonal antibody (MAb), C8, raised against A. baumannii capsule, proved a highly effective treatment against a minority of clinical isolates. To overcome this limitation, we broadened coverage by developing a second antibody for use in a combination regimen. We sought to develop an additional anti-A. baumannii MAb through hybridoma technology by immunizing mice with sublethal inocula of virulent, XDR clinical isolates not bound by MAb C8. We identified a new antibacterial MAb, 65, which bound to strains in a pattern distinct from and complementary to that of MAb C8. MAb 65 enhanced macrophage opsonophagocytosis of targeted strains and markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia murine models of A. baumannii infection. MAb 65 was also synergistic with colistin, substantially enhancing protection compared to monotherapy. Treatment with MAb 65 significantly reduced blood bacterial density, ameliorated cytokine production (interleukin-1ß [IL-1ß], IL-6, IL-10, and tumor necrosis factor), and sepsis biomarkers. We describe a novel MAb targeting A. baumannii that broadens immunotherapeutic strain coverage, is highly potent and effective, and synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/imunologia , Anticorpos Antibacterianos/imunologia , Biomarcadores/sangue , Colistina/imunologia , Citocinas/sangue , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-33468472

RESUMO

Recently, we reported rifabutin hyperactivity against Acinetobacter baumannii We sought to characterize potential interactions between rifabutin and colistin, the last-resort drug for carbapenem-resistant infections. Rifabutin and colistin were synergistic in vitro and in vivo, and low-dose colistin significantly suppressed emergence of resistance to rifabutin. Thus, this combination is a promising therapeutic option for highly resistant A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Rifabutina/farmacologia , Rifabutina/uso terapêutico
9.
Nat Microbiol ; 5(9): 1134-1143, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514072

RESUMO

Industry screens of large chemical libraries have traditionally relied on rich media to ensure rapid bacterial growth in high-throughput testing. We used eukaryotic, nutrient-limited growth media in a compound screen that unmasked a previously unknown hyperactivity of the old antibiotic, rifabutin (RBT), against highly resistant Acinetobacter baumannii. In nutrient-limited, but not rich, media, RBT was 200-fold more potent than rifampin. RBT was also substantially more effective in vivo. The mechanism of enhanced efficacy was a Trojan horse-like import of RBT, but not rifampin, through fhuE, only in nutrient-limited conditions. These results are of fundamental importance to efforts to discover antibacterial agents.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nutrientes/metabolismo , Rifabutina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Animais , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Colistina/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ensaios de Triagem em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C3H , Testes de Sensibilidade Microbiana , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/genética , Rifampina/farmacologia
10.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461272

RESUMO

Agricultural use of antibiotics is recognized by the U.S. Centers for Disease Control and Prevention as a major contributor to antibiotic-resistant infections. While most One Health attention has been on the potential for antibiotic resistance transmission from livestock and contaminated meat products to people, plant foods are fundamental to the food chain for meat eaters and vegetarians alike. We hypothesized that environmental bacteria that colonize plant foods may serve as platforms for the persistence of antibiotic-resistant bacteria and for horizontal gene transfer of antibiotic-resistant genes. Donor Acinetobacter baylyi and recipient Escherichia coli were cocultured in vitro, in planta on lettuce, and in vivo in BALB/c mice. We showed that nonpathogenic, environmental A. baylyi is capable of transferring plasmids conferring antibiotic resistance to E. coli clinical isolates on lettuce leaf discs. Furthermore, transformant E. coli from the in planta assay could then colonize the mouse gut microbiome. The target antibiotic resistance plasmid was identified in mouse feces up to 5 days postinfection. We specifically identified in vivo transfer of the plasmid to resident Klebsiella pneumoniae in the mouse gut. Our findings highlight the potential for environmental bacteria exposed to antibiotics to transmit resistance genes to mammalian pathogens during ingestion of leafy greens.IMPORTANCE Previous efforts have correlated antibiotic-fed livestock and meat products with respective antibiotic resistance genes, but virtually no research has been conducted on the transmission of antibiotic resistance from plant foods to the mammalian gut (C. S. Hölzel, J. L. Tetens, and K. Schwaiger, Pathog Dis 15:671-688, 2018, https://doi.org/10.1089/fpd.2018.2501; C. M. Liu et al., mBio 9:e00470-19, 2018, https://doi.org/10.1128/mBio.00470-18; B. Spellberg et al., NAM Perspectives, 2016, https://doi.org/10.31478/201606d; J. O'Neill, Antimicrobials in agriculture and the environment, 2015; Centers for Disease Control and Prevention, Antibiotic resistance threats in the United States, 2019). Here, we sought to determine if horizontal transmission of antibiotic resistance genes can occur between lettuce and the mammalian gut microbiome, using a mouse model. Furthermore, we have created a new model to study horizontal gene transfer on lettuce leaves using an antibiotic-resistant transformant of A. baylyi (AbzeoR).


Assuntos
Acinetobacter/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Transferência Genética Horizontal , /microbiologia , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Feminino , Klebsiella pneumoniae/genética , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Organismos Livres de Patógenos Específicos
11.
PLoS One ; 14(7): e0219824, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318907

RESUMO

In 2017, the WHO identified Acinetobacter baumannii as the top priority for the development of new antibiotics. Despite the need for new antibiotics, there remains a lack of well validated preclinical tools for A. baumannii. Here, we characterize and validate a mouse model for A. baumannii translational research. Antibiotic sensitivity for meropenem, amikacin, and polymyxin b was determined by the broth microdilution MIC assay. LD100 inoculums, in both blood and lung infection models, were determined in male and female C3HeB/FeJ mice that were challenged with various A. baumannii clinical isolates. Blood (blood infection model) or blood and lung tissue (lung infection model) were collected from infected mice at 2 and 18 hours and the bacterial burden was determined by quantitative culture. Blood chemistry was analyzed using the iStat system. Cytokines (IL-1ß, TNF, IL-6, and IL-10) were measured in the blood and lung homogenate by ELISA assay. Lung sections (H&E stains) were scored by a pathologist. In the blood infection model, the cytokines and physiological data indicate that mice become moribund due to sepsis (low blood pH, falling bicarbonate, and a rising base deficit), whereas mice become moribund due to respiratory failure (low blood pH, rising bicarbonate, and a falling base deficit) in the oral aspiration pneumonia model. We also characterized the timing of changes in various clinical and biomarker endpoints, which can serve as a basis for future interventional studies. Susceptibility was generally similar across gender and infection route. However, we did observe that female mice were approximately 2-fold more sensitive to LAC-4 ColR in the blood infection model. We also observed that female mice were more than 10-fold more resistant to VA-AB41 in the oral aspiration pneumonia model. These results establish parameters to follow in order to assess efficacy of novel preventative and therapeutic approaches for these infections.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Biomarcadores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...